Calculus II, Section 11.6, #4
Absolute Convergence and the Ratio and Root Tests

Determine whether the series is absolutely convergent or conditionally convergent.!
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Our series > o7 | % is clearly an alternating series. The corresponding positive-termed series is
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If we can show that the positive-termed series converges, then we know the series is absolutely convergent.
(If the positive-termed series converges, then the alternating series also converges.)

Note that
n®+1>n?
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The terms of our positive-termed series are less than the terms of the known convergent p-series > %,
p =3 > 1, so by the direct Comparison Test
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is convergent.

Since the positive-termed series is convergent, we know

is absolutely convergent.

1Stewart, Calculus, Early Transcendentals, p. 742, #4.



