Computer algebra systems sometimes need a helping hand from human beings. Try to evaluate

$$\int (1 + \ln(x)) \sqrt{1 + (x \ln(x))^2} \, dx$$

with a computer algebra system. If it doesn't return an answer, make a substitution that changes the integral into one that the CAS can integrate.¹

We'll use Wolfram Alpha (WA).

Using Mathematica format, the input is

Integrate $[(1+Log[x])*Sqrt[1+(x*Log[x])^2],x]$

and we get

So W|A is unable to evaluate the integral.

Let $u = 1 + (x \ln(x))^2$, then $du = 2(x \ln(x))(x \cdot \frac{1}{x} + \ln(x) \cdot 1) = 2(x \ln(x))(1 + \ln(x)) dx$. This is not a good result for us—the factor $2(x \ln(x))$ is not present in the integrand—but this does show us that the derivative of $x \ln(x)$ is present in the integrand. Let's try again.

Let
$$u = x \ln(x)$$
, so $difu = \left(x \cdot \frac{1}{x} + \ln(x) \cdot 1\right) dx = (1 + \ln(x)) dx$.

Our integral becomes

$$\int \sqrt{1+u^2} \, \mathrm{d}u$$

and W|A gives us

$$\int \sqrt{1+u^2} \ du = \frac{1}{2} \left(\sqrt{u^2+1} \ u + \sinh^{-1}(u) \right) + \text{constant}$$
 Computed by Wolfram|Alpha

Thus

$$\int (1 + \ln(x)) \sqrt{1 + (x \ln(x))^2} \, dx = \frac{1}{2} \left(x \ln(x) \sqrt{(x \ln(x))^2 + 1} + \sinh^{-1}(x \ln(x)) \right) + C$$

¹Stewart, Calculus, Early Transcendentals, p. 513, #46.