Trust Fund Grandparents decide to put a lump sum of money into a trust fund on their granddaughter’s 10th birthday so that she will have $1,000,000 on her 60th birthday. If the fund pays 11%, compounded monthly, how much money must they put in the account?

To find such a value we use this formula:

Future Value of an Investment with Periodic Compounding

If \(P \) dollars are invested for \(t \) years at the annual interest rate \(r \), where the interest is compounded \(k \) times per year, then the interest rate per period is \(\frac{r}{k} \), the number of compounding periods is \(k t \), and the future value that results is given by

\[
S = P \left(1 + \frac{r}{k} \right)^{kt} \text{ dollars}
\]

We have been given the following:

- The future value, \(S = 1,000,000 \).
- The annual interest rate written as a decimal, \(r = 0.11 \).
- We are compounding monthly so the number of compoundings per year is \(k = 12 \).
- Because the difference between the granddaughter’s 10th and 60th birthdays is 50 years, the number of years for the money to be invested is \(t = 50 \).

We’ll plug these values into the formula and to solve for \(P \) which represents the amount of the original investment.

\[
1,000,000 = P \left(1 + \frac{0.11}{12} \right)^{(12 \cdot 50)}
\]

\[
1,000,000 = P \left(1 + \frac{0.11}{12} \right)^{600}
\]

\[
1,000,000 = P \left(1.00916667 \right)^{600}
\]

\[
1,000,000 = P \left(238.6373092 \right)
\]

\[
\frac{1,000,000}{238.6373092} = P
\]

\[
4190.459587 = P
\]

The grandparents must put $4190.46 into the granddaughters account on her 10th birthday.

1 Harshbarger/Yocco, *College Algebra In Context*, 5e, p. 385, #42.