Mortgages The balance owed y on a $50,000 mortgage after x monthly payments is shown in the table that follows. The function that models the data is \[y = 4700\sqrt{110 - x} \]

<table>
<thead>
<tr>
<th>Monthly Payments</th>
<th>Balance Owed ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>47,243</td>
</tr>
<tr>
<td>24</td>
<td>44,136</td>
</tr>
<tr>
<td>48</td>
<td>36,693</td>
</tr>
<tr>
<td>72</td>
<td>27,241</td>
</tr>
<tr>
<td>96</td>
<td>15,239</td>
</tr>
<tr>
<td>108</td>
<td>8074</td>
</tr>
</tbody>
</table>

a. Is this a shifted root function?

Let’s take a look at the data and the given function, \(y = 4700\sqrt{110 - x} \).

From this we can see that basic function for this graph is \(y = \sqrt{x} \) and we can say, yes, this is a shifted square root function.

b. What is the domain of the function in the context of this application?

The domain of the function is all values that \(x \) can take on while still making sense in the context of the application. Since \(x \) represents the number of monthly payments, we can say that \(x \) is zero or more. That is, \(x \geq 0 \).

But, we also want the radicand, \(110 - x \), to be non-negative and algebraically we say,

\[
110 - x \geq 0 \\
-x \geq -110 \\
x \leq 110
\]

So \(x \) is restricted to values greater than or equal to 0 and, at the same time, less than or equal to 110 and we can write, \(0 \leq x \leq 110 \).

The domain of the function in the context of this application is \([0, 110]\).

\(^1\)Harshbarger/Yocco, *College Algebra In Context*, 5e, p. 261, #64.
c. Describe the transformations needed to obtain the graph from the graph of \(y = \sqrt{x} \).

Let’s start with the graph of \(y = \sqrt{x} \) and transform it to get the graph of \(y = 4700\sqrt{110-x} \).

\[
\begin{align*}
 y &= \sqrt{x} & \text{The basic function. Shown in green dots.} \\
 y &= \sqrt{-(x)} & \text{Reflection across the y-axis. Shown in red dashes.} \\
 y &= \sqrt{-(x-110)} & \text{Shift 110 units to the right. Shown in solid orange.}
\end{align*}
\]

Finally, \(y = \sqrt{-(x-110)} \) is stretched vertically by a factor of 4700. I had to change the scale on the y-axis so the graph would show and the resulting equation,

\[
y = 4700\sqrt{-(x-110)},
\]

is shown below in solid blue.

In short, the transformations are: a reflection across the y-axis, a horizontal shift 110 units to the right, and a vertical stretch using a factor of 4700.