Wind Chill The formula that gives the wind chill factor for a 60°F temperature and a wind with velocity V in miles per hour is

$$W = \begin{cases}
60 & \text{if } 0 \leq V < 4 \\
0.644V - 9.518\sqrt{V} + 76.495 & \text{if } 4 \leq V \leq 55.9 \\
41 & \text{if } V > 55.9
\end{cases}$$

Before we get started answering the questions, let’s notice how the wind chill function W is defined on three intervals. The part of the function that you use will depend on the velocity of the wind, V.

For example, if the wind speed is at least 0 and less than 4, we’ll use the first piece of the function:

$$W = \begin{cases}
60 & \text{if } 0 \leq V < 4 \\
0.644V - 9.518\sqrt{V} + 76.495 & \text{if } 4 \leq V \leq 55.9 \\
41 & \text{if } V > 55.9
\end{cases}$$

Likewise, if the wind speed is at least 4 and at most 55.9, we’ll use the second piece of the function:

$$W = \begin{cases}
60 & \text{if } 0 \leq V < 4 \\
0.644V - 9.518\sqrt{V} + 76.495 & \text{if } 4 \leq V \leq 55.9 \\
41 & \text{if } V > 55.9
\end{cases}$$

And last, if the wind speed is greater then 55.9, we’ll use the third piece of the function:

$$W = \begin{cases}
60 & \text{if } 0 \leq V < 4 \\
0.644V - 9.518\sqrt{V} + 76.495 & \text{if } 4 \leq V \leq 55.9 \\
41 & \text{if } V > 55.9
\end{cases}$$

a. Find the wind chill factor for the 60°F temperature if the wind is 20 mph.

We’re asked about the value of W when $V = 20$ so our first step is to find the piece of W that corresponds to 20. Since 20 falls between 4 and 55.9 we’ll use the function $W = 0.644V - 9.518\sqrt{V} + 76.495$ and substitute $V = 20$ to find W.

$$W = 0.644V - 9.518\sqrt{V} + 76.495$$

$$= 0.644(20) - 9.518\sqrt{20} + 76.495$$

$$= 46.81$$

The wind chill factor for a 60°F temperature when the wind is blowing 20 mph is 47°F.

b. Find the wind chill factor for the 60°F temperature if the wind is 65 mph.

In this question we’re asked about the value of W when $V = 65$. The third piece of the function is defined for all values of V that are greater than 55.9. Since 65 > 59.9, we see that $W = 41$.

The wind chill factor for a 60°F temperature when the wind is blowing 65 mph is 41°F.

1Harshbarger/Yocco, College Algebra In Context, 5e, p. 210, #48.
c. *Graph the function for* \(0 \leq V \leq 80 \).

I graphed \(W \) in three pieces so you can clearly see how the function is defined in the given intervals.

\[
\begin{align*}
\text{If } 0 \leq V < 40, & \quad y = 40 - 0.64V \\
\text{If } 40 \leq V \leq 55.9, & \quad y = 41 - 0.64V \\
\text{If } V \geq 55.9, & \quad y = 41 - 2V \\
\end{align*}
\]

\(d. \) *What are the domain and range of the function graphed in part (c)?*

The domain is all values of \(V \) that are defined. In this example, it doesn’t make sense for the wind to blow in negative miles per hour and part (c) limits us to a wind velocity of 80. This gives us a domain of \(0 \leq V \leq 80 \).

The range are the values of \(W \) that are generated by the values of the domain. The range is \(41 \leq W \leq 60 \).