Internet Users The percent of the U.S. population with Internet access can be modeled by \(y = 1.36x + 68.8 \), with \(x \) equal to the number of years after 2000. When does this model indicate that the U.S. population with Internet access will reach 96%? (Source: Jupiter Media Metrix)\(^1\)

Keep in mind that \(x \) represents the number of years after 2000 and \(y \) is the percent of households with Internet access.

We can solve this problem two ways: Algebraically and Graphically.

Let’s start by solving algebraically. That is, we’ll use the given equation letting \(y = 96 \) and solving for \(x \) to find the year.

\[
96 = 1.36x + 68.8 \\
27.2 = 1.36x \\
20 = x
\]

This tells us that 20 years after 2000, in 2020, 96% of the U.S. population will have Internet access.

Next, we’ll solve the same problem graphically.

I’ve put \(x \) (the independent variable) on the horizontal axis and \(y \) (the dependent variable) on the vertical axis.

Graph two lines: \(y_1 = 1.36x + 68.8 \) and \(y_2 = 96 \)

\(y_1 \) shows the relationship between \(x \) and \(y \) as defined by the given equation.

\(y_2 \) shows a constant function that represents a value of 96.

These two lines intersect when \(x = 20 \) so we can say that 20 years after 2000, in 2020, 96% of the U.S. population will have Internet access.

\(^1\)Harshbarger/Yocco, *College Algebra In Context*, 5e, p. 103, #68.